Nomenclature alphabetical order

2\(a\) Patch length (mm)

2\(a'\) Critical patch length (mm)

2\(b\) Patch width (mm)

2\(b'\) Critical patch width (mm)

\(A\) Area of flow (mm\(^2\))

\(c\) Patch depth (mm)

\(c'\) Critical patch depth (mm)

\(c_{A\text{Ce}}\) External deterioration rate for AC pipes (mm/y)

\(c_{A\text{Ci}}\) Internal deterioration rate for AC pipes (mm/y)

\(c_d\) Discharge coefficient

\(c_l\) Coefficient for strength reduction

\(c_{lc}\) Coefficient for creep modulus reduction

\(c_{lf}\) Coefficient for fatigue strength reduction

\(c_s\) Intercept parameter for long-term corrosion of metallic pipes (mm)

\(C\) Compression modulus (GPa)

\(C_f\) Fatigue constant for host pipe under cyclic surge pressure

\(C_{HW}\) Hazen Williams roughness coefficient

\(C_n\) Total cash flow for each year ($)

\(C_{n}(t)\) Nominal cash flow ($) at time \(t\)

\(C_{\text{nothing}}\) Cost of do nothing option ($)

\(C_r(t)\) Real cash flow ($) at time \(t\)

\(CRF\) Creep retention factor of the liner

\(d\) Initial hole (defect) size (mm)

\(d_f\) Future hole (defect) size (mm)
\(D \) Pipe internal diameter (mm)
\(D_0 \) Pipe external diameter (mm)
\(D_L \) Liner external diameter (mm)
\(D_{Li} \) Liner internal diameter (mm)
\(D_M \) Mean diameter of the host pipe (mm)
\(DN \) Pipe nominal diameter (mm)
\(E_a \) Young’s modulus of the adhesive (GPa)
\(E_A \) Short-term tensile or compressive modulus of the liner in the axial direction (GPa)
\(E_{fa} \) Short-term flexural modulus of elasticity (axial) of the liner (GPa)
\(E_{fal} \) Flexural creep modulus (axial) of the liner (GPa)
\(E_{fh} \) Short-term flexural modulus of elasticity (hoop) of the liner (GPa)
\(E_{fhl} \) Flexural creep modulus (hoop) of the liner (GPa)
\(E_L \) Short-term modulus of elasticity of the liner (GPa)
\(E_{i,dry} \) Dry creep modulus of the liner (GPa)
\(E_{i,wet} \) Wet creep modulus of the liner (GPa)
\(E_p \) Modulus of elasticity of host pipe material (GPa)
\(E_s \) Soil modulus (MPa)
\(E_t \) Short-term tensile modulus of elasticity of the liner (GPa)
\(E_{ta} \) Short-term tensile modulus of elasticity (axial) of the liner (GPa)
\(E_{tal} \) Tensile creep modulus (axial) of the liner (GPa)
\(E_{th} \) Short-term tensile modulus of elasticity (hoop) of the liner (GPa)
\(E_{thl} \) Tensile creep modulus (hoop) of the liner (GPa)
\(E_{tl} \) Tensile creep modulus of the liner (GPa)
\(f \) Friction coefficient of the interface of the host pipe and liner
g Acceleration due to gravity (m/s²)

h Pressure head (m)

H Burial depth (mm)

H_w Groundwater depth (mm)

i Discount rate (%)

IN Inflation rate (%)

I_o Initial investment ($)

k Lateral earth pressure coefficient

k_1 Patch factor

k_2 Aspect ratio

K Enhancement factor

K_{IC} Fracture toughness of host pipe material (MPa m¹/²)

L Installation length of the liner (m)

L_{cost} Cost of the liner ($/m$)

L_{mis} Miscellaneous liner cost ($)

L_c Critical crack length (mm)

L_p Length of the pipe (m)

L_{ps} Length of the pipe spool (m)

m_f Fatigue constant for host pipe under cyclic surge pressure

$MAOP$ Maximum allowable operational pressure (MPa)

n_f Cyclic surge factor

n_{PC} Number of recurring cyclic surge pressure cycles per day

n_{TPC} Total number of surge pressure cycles for the service life of pipe/lined pipe

N Safety factor for host pipe

N_i Factor of safety for liner imperfections
NPV Net present value ($)

\(P \) Operating pressure (MPa)

\(P_G \) Groundwater load (MPa)

\(P_{GC} \) Groundwater load capacity (MPa)

\(PN \) Nominal pressure (bar)

\(P_N \) External pressure on the liner (MPa)

\(P_T \) Test pressure (MPa)

\(P_c \) Recurring cyclic surge pressure (MPa)

\(P_{max} \) Maximum allowable pressure (MPa)

\(P_{min} \) Minimum internal pressure (MPa)

\(P_s \) Surge pressure (MPa)

\(P_v \) Vacuum pressure (MPa)

\(q \) Host pipe ovality (%)

\(q_t \) Total external pressure on pipes (MPa)

\(q_{tc} \) Liner capacity for total external pressure (MPa)

\(Q \) Leak rate (L/s)

\(r_s \) Minimum corrosion rate (long-term) of metallic pipes (mm/y)

\(r_{sh} \) Lateral extension rate for metallic pipes (mm/y)

\(r_{sv} \) Radial corrosion rate for metallic pipes (mm/y)

\(R_{cost} \) Cost of replace option ($/m)

\(R_h \) Hydraulic radius (m)

\(R_{mis} \) Miscellaneous replace cost ($)

\(R_w \) Water buoyancy factor (unitless)

\(S \) Slope of the energy grade line, or head loss per unit length of pipe (m/m)

\(SCF \) Stress concentration factor
SCF Critical stress concentration factor

t Time (years)

t$_h$ Time (hours)

T Pipe wall thickness allowing for uniform corrosion (mm)

T_{ext} Estimated external uniform corrosion (mm)

T_f AC pipe remaining wall thickness at failure (mm)

T_{int} Estimated internal uniform corrosion (mm)

L Liner thickness (mm)

T_n Pipe nominal wall thickness (mm)

u_g Existing gap width of host pipe (mm)

u_{gp} Gap formed due to axial movement or pulling force (mm)

V Flow velocity (m/s)

W Traffic load (kN)

W_s Live load (MPa)

x_l Coefficient for strength reduction

x_{lc} Coefficient for creep modulus reduction

x_{lf} Coefficient for fatigue strength reduction

y_f Predicted year for failure of an AC pipe (mm)

α Coefficient of thermal expansion/contraction (mm/mm/°C)

β Fraction of liner service life when out of service

γ_s Soil unit weight (kN/m3)

γ_w Unit weight of water (kN/m3)

ΔT Temperature change (°C)

θ Rotation angle (°)
\(\nu_L \) Poisson’s ratio of the liner

\(\nu_p \) Poisson’s ratio of host pipe material

\(\sigma_A \) Short-term tensile or compressive strength of the liner in the axial direction (GPa)

\(\sigma_{ad} \) Adhesion strength of the liner to host pipe substrate (MPa)

\(\sigma_{fa} \) Short-term flexural strength (axial) of the liner (MPa)

\(\sigma_{fal} \) Long-term flexural strength (axial) of the liner (MPa)

\(\sigma_{fh} \) Short-term flexural strength (hoop) of the liner (MPa)

\(\sigma_{fhl} \) Long-term flexural strength (hoop) of the liner (MPa)

\(\sigma_{max} \) Maximum stress in the liner (MPa)

\(\sigma_p \) Tensile stress in the host pipe (for AC pipe) (MPa)

\(\sigma_{t,AC} \) Ultimate tensile strength of AC (MPa)

\(\sigma_t \) Tensile strength of the liner (MPa)

\(\sigma_{t,AC} \) Ultimate tensile strength of host pipe material (MPa)

\(\sigma_{ta} \) Short-term tensile strength (axial) of the liner (MPa)

\(\sigma_{tal,r} \) Tensile rupture strength (axial) of the liner (MPa)

\(\sigma_{th} \) Short-term tensile strength (hoop) of the liner (MPa)

\(\sigma_{thl,r} \) Tensile rupture strength (hoop) of the liner (MPa)

\(\sigma_{thl} \) Long-term strength (hoop) of the liner and is the lesser value of either: the tensile rupture strength (hoop), \(\sigma_{thl,r} \) (MPa) or fatigue strength (hoop), \(\sigma_{thl,f} \) (MPa)

\(\sigma_{thl,f} \) Fatigue strength (hoop) of the liner (MPa)

\(\sigma_y \) Yield strength of steel (MPa)

\(\tau \) Transition period between short-term and long-term corrosion (y)

\(\phi \) Soil friction angle (°)

\(\phi_c \) Wet creep reduction factor
ϕ_s Wet strength reduction factor